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ABSTRACT

A very general set of orthogonal polynomials with five free
Parameters is given explicitly, the orthogonality relation is

proved and the three term recurrence relation is found.
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SIGNIFICANCE AND EXPLANATION
Orthogonal polynomials are used in numerical analysis for interpolation
and quadrature, in the quantum mechanical theory of angular momentum, in
statistics and many other areas. The polynomials introduced in this paper
contain all the classical orthogonal polynomials as limits, and so provide
a unified way of deriving some of the properties of the classical polyno-
mials, as well as giving us a more general set of polynomials to use for

applications.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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A SET OF ORTHOGONAL POLYNOMIALS THAT GENERALIZE THE RACAH
COEFFICIENTS OR 6 - j SYMBOLS

Richard Askey(l) and James Wilson

1. Introduction. A hypergeometric series has the form I L with aml/an a rational

function of n. A basic hypergeometric series has an+l/an a rational function of qn

for a fixed q. The standard notation will be used. It is

A (al,...,ar; x) g azv (al)n (‘r)n 1‘_n_
rs bl""'bs 28 (bl)n (bs)n n!

where

(1.2) (a)n-a(a+1) e (a+n-1), B 5 A

1 n=20
for hypergeometric series and

.o 3 n
P 2 a1""'ar+1' A z (al.q)n (ar”_,q)nx
- ’ . e . .
r+l'r 1-.»1,...,19r 250 (bl.q)n (bz_.q)n(q,q)n
with
n-1
(1.4) (mq)n = (1 =a) 5 (3 =aq" ) no= 3,200
= 1 n=20

1
1 - aq-n) eis (1 = aq-l)

n= <], =2, .00

for basic hypergeometric series.

For readers who are unacquainted with basic hypergeometric series, observe that

@a)_ @
e @i, ®a

There are reasons for using (a;-q)n in (1.3) rather than (qu;q)n which go beyond a
desire for a notation that is easy to set in type. There are times when we want "a"

to be negative, and we can only make qa negative by taking o complex. It is

(I)Spomored by the United States Army under Contract No. DAAG29-75-C~-0024.
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possible to do this but unnecessary. Also there are times when we want "a" to be
independent of q. Again it is possible to take a = (log a)/(log Q) so that q‘l is
independent of g, but it is unnecessary if we use (ltq)n rather than (qarq) n’

In (12] it was pointed out that

-n, n+a+B+1, -x, x+y+8§+1

(1.5) pn(k(x)) = 4F3 SRS gy
(1.6) A(x) = x(x +y + 8 +1)
is a polynomial of degree n in A(x) which is orthogonal on x = 0,1,...,N when

a+1l, B+8+1 or Y+ 1 is =-N. This orthogonality relation is equivalent to

Racah's orthogonality for functions that are usually called Racah coefficients or 6 - ;|

"symbols. These polynomials contain as limiting cases the classical polynomials of

Jacobi, Laguerre and Hermite and their discrete analogues which go under the names of
Hahn, Meixner, Krawtchouk and Charlier polynomials. All of these polynomials can be
given as hypergeometric series. Since basic hypergeometric extensions of the classical

polynomials have been found [8], [2] it is natural to look for a basic hypergeometric

extension of (1.5). The right polynomials to consider are balanced 4w3's

- + - +

q nr qn labl qx: qx 1Cd
(1.7) pn(u(x);a.b.f:.d;q) = pn(v(x)) = 43 i 9.9

aq, bdq, cq
where
+
(1.8) nx) =q %+ e .
Since
- +
n @M, @ abia,d Kkl

2541 . _ 3
(aq;q), (baq:q), (cqa; @), (1a) I:I AT e g i

p(u(x)) =1+ 1
k=1

it is clear that pn(u (x)) is a polynomial of degree n in the variable u(x).
The adjective "balanced" refers to a condition put on the parameters. For basic

hypergeometric series it means that the product of the numerator parameters times q
-n+n+l -X+x+1

3
is the product of the denominator parameters. In this case q abgq cdq = abcdq .
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2. Orthogonality. Assume that one of

relation is

ag, cg or bdg is q-N. Then the orthogonality
N

(2.1) /) pn(u(x):a.b.c,d;q)pm(u(x):a,b,c,dzq)w(x) =0, m#¥n, O<mnzsN,
x=0

where

(cdgiq) (1 - cag™*l) (aqiq) , (bdq:q) (cq;q) (abg) %
w(x) = X X

@2, - cae) (caa @), b leqra), @ua),

Observe that

m-1 . .
(q X3 1;q)m(qx+1mq)m L TT 1-a 1q x+J)(1 2 cqx+)+1)

.
il
o

g
1
[~

i’ I ¥ B

=

(1 + cq

w.

=0
is a polynomial of degree m in u(x). To prove (2.1) for m# n it will suffice
to show that

N
(2.2) I=) p

(u(x);a,b,c,d;q) (q-xd-l;q) (qx”'c;q) wW(x) =0; m<n.
%x=0 n m m

The advantage of (2.2) over (2.1) is that the polynomial of degree m can be attached

to the weight function. Using the definition of pn(u (x)) in (2.2) gives

- + - +1 k
? n (@ e, Q" lab;q)k(q @), @ edia), g
=

#%0 k=0 (aq;q), (bdg:q), (cq; Dy (@),

-x -1 +1 2x+1
(q *a ;q)m(qx c;q)m(cdq;q)x(l - cdq )(aq;q)x(bdq:q)x(cq;q)x

(@), 0 - cda) (™ edaiq), (b 'cas @) (aqr@)  (aba) ™

iq)

- + +

; N (@ @), @ abig), (ag® L), (bagttt
-1 -1

k=0 x=k (q;q)k(a edq;q), (b cq:q)x(q;q)x_k

x-k

k), [m
k-x(k+m+1)+( ¥
(chu’q)x_km(cdq;q)#k(1 - cdq®*ly (o) kHmy 2) (2)

@qiq),_, (1 - cdq)




N-k (aq"*l;q)x(bdq"”;q)

m
-n n+l K(k+1)/2
-q(z’(_l)m n (g :q), (g "abiq).q . %
& k0 (@ DTV an* x0 @ Tawa,,,

e |
(ch+l’q)x+m (cdq}q)’”m‘ G = cdqz’ 2k+1) 2 r R

(1 - cdq) (.bq“*“‘l

e, (@), @u)

x+k x+k-m

-mk~k

m
= 1 k+1 2k+1 k
i q‘Z)(_l)m xz: (g n;q)k(qm ab;q), (cdqiq) ,, (cq 19) (1 - cdq ) (~-1)"q

a k=0 (;,

-1 -1 k |
(i), (a cdq;q), (b cqsq)k(dqrq)k_‘(l - cdq)q’ "~ (ab) 1

+ q2k+28*1 1

N-k (cdqzk

La, a - ca )@l bad @) (ed ™ i) ( -m-k-1)"

q
x=0 (q:q) (1 - 0ag™*!) (a~cad" @ x(b-lch”';q)x(clqk-mﬂr -

Q)x

The sum on x can be evaluated since it is a very well poised 6’5' The required sum is

-~ y -1 -1
az, aq, ~aq, b, ¢, q ” aquﬂ (aquq)“(aqu 1c :q)
i 9
- - + - -
a, -a, a’p 1q, azc Iq, uqu ~ e (aqu 1;q)ﬂ(aztzlr: 1:q)N

N

(2.3) &’s

%o _(a2p el (a2 e ) (@’q"c

N+ -1 -
(aZq 1;q)- @2™p 1o

) (a%ab i), a%ac i)

Up until now no assumptions on q have been made other than the implicit assumption
that there are no zeros in the denominator. To make the calculations that follow a

little easier we will assume |g| < 1 and define (a;q)_ by
w 3
(2.4) . @ =TT -adh .
n=0
Since we are only dealing with polynomials it is easy to remove this restriction on gq.
A proof of (2.3) using orthogonal polynomials is given in [1]. One needs to set

bc = aq in the formula in Theorem 12. A proof is also given in (10, (3.3, 1.4)1.

However in the appendix in [10] this formula is given with some misprints.
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Using (2.3) in I gives

m
2 - +1 2k+1
( )(-l)n(cq}q)m n (q l";q)k(q“ ab;q)k(cdq;q)n(l - cdq )

a= k=0

q
I=

=1 =1
(q;q)k(a cdq;q)k(b cq:q)kll - cdq)

2
| S
_-2—.k ol

-1 - - - k
(chI;q)k(cdqzk+2;q).(a lb lc;q).(a ldq-n;q)_(b lq-m:q).(-l) q (ab)

=1 . k+l =1 k+l k=m+1 =1 =1 _~k-m=1
(da;q), o (cqiq), (@ “edq” Tiq) (b Tcq Q) _(dq iq) _(a b “q iq)

[

DM@ ea @l ™a 6 ™ @ (cda®;@)_(carq) e

@ leawi @), 6 eqr ) (@wia)(a b I ™L,q)

- + + k
n (q n;q)k(qn 1ab;q)k(cqm lsq)kq

k=0 (q: q)k(aquz: Q) (cq; EUS,

This sum is a balanced 3¢2. and so can be summed using

a?, ad", b \ (c/b; q) (a/b; q) b"
(2.5) v i 9,9 = =
3"2 3 |
c,

(crq)n(drq)n

when abq = cd. The final result is

A(abc'lq;q)n(q'“.- @ (ed™hH"
I =

(abq™"?;q) CET 3

where A is the coefficient of the sum above. So I = 0 for m=0,1,...,n - 1.

The value of the sum in (2.1) when m = n can be found from this sum. However

it is edsier to obtain it from results in the next section.
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3. Recurrence relation. If pn(x) are orthogonal with respect to a positive measure

then

(3.1) xpn(x) = Anpml(x) + Bnpn(x) + Cnpn_l(x); P-l(x) E0 .

If the measure has infinitely many points of support then (3.1) holds for n = 0,1,... .
When there are only finitely many point masses, say N + 1, then (3.1) holds for
n=0,1,...,8 -1, and when n =N the zeros of | pN_u(x) determine the location

of the point masses. For a proof of this old fact see [3]. It is implicit in some

of Tchebychef's work on continued fractions. We have shown that {pn(u(x))} is
orthogonal, so (3.1) becomes

(3.2) uGp (uix)) =ap ) + B p (u(x)) + CPpog (H(x)) - 1
When x = 0, pn(u(O)) =1, so (3.2) can be written as
(3.3)  [ux) - wp(@lp (nix)) = A lp ., (ux)) - p (ux)] - C,lp (nlx)) - pn_l(u(x))l . ’

An is determined by equating the highest powers of u(x). It is

il s . -ae™ha - a™ha - mg™ha - et
n a8 abq2n+1) a - a.qun+2)
" since / ;
4 (2)
(q n:q)n(qnuab:q) nqn(-l)nq . -
(3.5) pn(u(x)) = (aq:q)n(mq,q)n(cq’q)n(q,q)n {fu(x)] + lower terms .

The easiest way to find Cn is to first simplify (3.3). A routine calculation gives

2 - 2m+2 -X x+1
5 o=t - g™ a1 -g ) - g cd)
(3.6) Pn+1(v(:t)) Pn(u(x)) 0 - aq) (1 - baw) (L - o)
Fra 8" i T e B e T
A 2 2 i 9.9

aq”, bdgq®, cq?

So (3.3) can be rewritten as

7 SHTCENSPSI PP SN Y P eSS



-n n+l -X
- ¢ |9 +a "ab, g7,
43
aq, bdq, cq

2n+2 -n n+2 =-x+1 x+2
a R |

-Anq_n(l -q b) g 9 -ab, q cd

= ) i 9.9
= ~baq) (1 - 43 2
( aq) (1 q) ( cq) aq?, baq?, qu

-n+ -n+ + -x+ +
cnq n 1(1 = qznab) q n 1' qn lab, q X 1’ qx ch

* = = i 4 i 4,9
(1 aq) (1 - bdqg) (1 cq) 43 aqz, bdqz’ cq2

Now there are a couple of ways to proceed. If x =1 then all the _¢_'s can be

L]
43
evaluated, but the reduction is more complicated than it has to be. Another way is

to set q-x = aq and use (2.5) on all the series. This calculation gives

c =891 - g -bg™Ha - abc-;gy)(l - ad-lqn)

n 0 = Wy (kg

(3.8)

Formula (3.2) is an analogue for balanced 4¢3's of one of the contiguous relations

of Gauss. Set
a,b,c,d
Y = ¢( i Q.Q’
e, f,g
where abcdq = efg and one of a, b, ¢ or 4 is q-n. Also set
=1
aq,bq “,c,d
¢(at+,b-) = ¢ i 9,9 -
e, f.g

Then (3.2) becomes

(3.9) efg(l - b)(a - e)(a - £f) (a - g) (ag - b)¥ (a-,b+)

a%efgil ~ ejifl '~ dy ey ~8)'(a - by
- efg(l - b)(a -e)(a=-£f)(a-g)llag-Db) |¢

+ a2cdq(l - a)(e - b (£ - e) (g - b) (a - by

- a%c8q(l ~ a) (e = BY(E - e} lg = bila - BEIViat,b=) = 0 ,
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(3.10) efg(l - b)(a - e)(a - f)(a - g)(ag - b) [¢ (a=,b+) - ¢]
+ a%cdq(l - a)(e - B) (£ - e) (g - b)(a - bq) [¢ - ¥ (a+,b-)]
+ alefg(l - e) (1 - d)(ag - b) (a - bg)y = O .

To find the sum of (2.1) when m = n, call it hn' Then

AR . = £ wp (Wx)p, ) (1 (x))w(x)

and
egh. g ,Z‘ HOOP (u(x)p ) (u(x))wx)
3 An-lhn
so
<, CLrese
(3.11) = B moen = A o
n A _, © 1 A A, ©
The 6"5 sum (2.3) gives :
2 d 1
(cdq ;q)w(fg:q)m(;; Jw(;;q) -
(3.12) ho = cdq \ oq 1
(229 50 (52 o] w5 vl
and so

=1 =Y n
2 (QIQ)n(l - abq) (bq;q)n(ad q,q)n(abc q.q)n(cdq) .

2
. (aba;@ (1 - abg”™Y) (agi@) (bagia), (cara)

h

Once this formula has been found some of the mystery of Section 2 can be removed.

It is natural to ask where the weight function came from. Observe that

-n n+l C x+1
PO ab, q ) q cd,
4 3 ’ qlq
aq, bdq, cq

is symmetric in n and x when (a,b) is changed into (c,d). This symmetry carries
over to w(x) and hn, that is w(n) is just ho/hn with (a,b) interchanged

with (c,d). The reason for this is that 2 matrix that is orthogonal by rows is also
orthogonal by columns. The usefulness of this remark was mentioned by Karlin and
McGregor [9] in connection with the Hahn and dual Hahn polynomials. Also see Eagleson

[6]. 1In fact this is how we found the weight function. However we could not give a

-a—




proof by this method without first proving the recurrence relation (3.3) directly.
This would be very tedious, so it is preferable to prove the orthogonality directly.

To show from the recurrence realation that the masses must be located at x = 0,1,...,N,
observe first that AN = 0, since one of agq, bdg and cqg was assumed to be q-N.

For definiteness take bdq = q-N. The other cases are handled in a similar fashion.

Formula (2.3) will hold when n = N if we can show that

A - g™ - @Mearp (ux) = oyl ) = py_ WG] .

Both sides vanish when x = 0, since pn(u(O)) = 1. Use (3.6) on pN(u(x)) = pN_l(u(x))
and the value of cN given in (3.8), to see that this is equivalent to
N+1 =% Xt
S WO g _cdq - g - bgM @ - abe ldH a - aa”lgY)
¥=13) 33 i uq) = 2N 2N+1
aq, cq (1 - abg ) (1 - abg )
N+1 E=x  x+2
WO RS R b
1 N - 1 i 2 ' ’ ’
( aq) (1 - bdq) ( cq) 32 s cqz

: . i 20y -x o
when x=1,2,...,N. For the series is terminated by q1 , SO it is correct to

replace the factors (q-N;q)k/(q-N;q)k by 1, since they do not vanish. Since

x=1,2,...,N the series in (3.13) can be summed using (2.5). Again a simple calcula-

tion shows that (3.13) holds for x = 1,2,...,N. Thus the recurrence relation (3.2)

holds when n=N and x = 0,1,...,N. Therefore the point masses must be located

at x = 0,1,...,N.

9=




4. Summary and miscellaneous results. For ease of reference we state the two main

results again:

N
(4.1) ) P, (u(x);a,b,c,diq)p, (u(x)5a,b,c,diq)w(x)
x=0

= § h , ag, bdg or cq=q-N.

m,n n
where
a®, b, ¢, **ea
(4.2) pn(u(x);a:b;cld:Q) e 4V’3 i 9,9
aq, bdq, cq
4.3) u = q % + g lea
2x+1
(cdq;q)x(l = cdq ) (aq:0:1)x(bdq;q)x(cq;q)x
(4.4) w(x) = =1 o1 5
(q;q)x(l - cdq) (a cdq;q)x(b cq;q)x(dq;q)x(abq)
~1 -1 n
(q:q)n(l - abq) (bq;q) (ad “qiq) (abc "q;q) (cdq)
(4.5) h = o = =

n 2n+1
(abq.q)n(l - abq )(a'q,q)n(bdq.q)n(cq,q)n

(cdqz:q)m(a-lb'lc:q)Q(a_ld;q)m(b'l;q)a

(@ teaqia)_ (b o) @) @b g i)

©

These infinite products look like they must have lql < 1 before they make sense.
However, since one of aq, bdg or cq |is q-N these products all reduce to finite
products. For example, when aq = q—N, then

2 =T = = - - o
(cdq™iq) ,(a T lc;q)m(a ld;q)w(b l;q)w (cdqz;q)a(b lcquﬂ;q)»(dquﬂ;q)ﬁ(b l;q)w

- - -1 -1 - = 2+N
(a lcdq;q)m(b lcq;q),(dq;q),(a lb q l;q)m (cdq

i) b teqra) (@), ® q%a)

2 =1
£ (cdq .q)N(b ;q)N

-1
(b <:<;.<;)N(clq.q)N

(4.6) -1 - g9 a - Mearp x)iab,cdia)

= Anp (u(x);a,b,c,d;q) - (An + Cn)pn(u(x);a,b,c.d;q)

n+l

+ Cnpn_l(u(x);a,b.c,d;q) ’

-10-
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where P_l(U(X)ia,b,c,d;q) =0 and

+ +
: s A o -apg™ha - ag™ha - bag™ha - o™
n o~ abq2n+1)(1 i abq2n+2)
5 A c < -aha -bgh (e - abg™) (@ - ag"
n iF = aqun)(l 3 abq2n+1)
}* When aq, bdg or cq is q-N then (4.6) holds for n=0,1,...,N -1 and all x
;2 > if the basic hypergeometric series that define pn(u(x)) are assumed to terminate so

that pn(u(x)) is a polynomial of degree n, and to hold when n = N when

Rl x = 0,1,...,N. When none of aq, bdg or cq is equal to q-N then (4.6) holds for

all i far n = Qidsdces
For the polynomials pn(u(x)) to be orthogonal with respect to a positive measure
it is necessary and sufficient that

(4.9) >0

A
n-lcn
See [7, Chapter II, Theorem 1.5]. If (4.9) holds for n = 1,2,..., then the measure
5 has infinitely many points of support; when it holds for n = 1,2,...,N then the |

measure can be taken to have support on N + 1 points. In this paper we have only

considered some cases when the measure is purely discrete and is supported on a finite

set of points. In a later paper we will treat the general cases where the measure has

both an absolutely continuous part and a discrete part.

There are many special cases of the orthogonality relation (4.1) which are interest-
ing. When d =0 and c¢q = q_N the polynomials were discovered by Hahn, and their
weight function was found a couple of years ago by Andrews and Askey. Delsarte [4],

Dunkl [5] and Stanton [11] have considered special cases of these polynomials. When

. -N
b = 0 the polynomials are called dual Hahn polynomials. The orthogonality when aq = q

was also found by Andrews and Askey.

Another interesting special case is Stanton's g-analogue of the Krawtchouk

polynomials. These are

«Il=




-X -N-1
Kn(q ic,.q i q) - 3¢2 -N i 9.9 .
0, g 4
To obtain these from the g-Racah polynomials (1.7) first set c =d =0 and aq = q—N,
then set b = -cqml so ab = ~c. The weight function is then -

-N
(@ :q) X
w(x) = X i ] =

@a), \ cq

(-N) X =
X (%) -n* = (:)(-i—) , which is the weight function

When q + 1 this converges to =

for the Krawtchouk polynomials.

A word of caution about characterization theorems needs to be said. There are
many theorems that say "the classical polynomials are the only polynomials to have a
given property". Such theorems are often misleading. For example, Eagleson (6] showed
that the Charlier, Krawtchouk and Meixner polynomials are the only polynomials that

are self dual. He is able to prove this theorem and yet miss the polynomials
pn(u (x);a,b,a,b), which are clearly symmetric in n and x because his definition

of self dual or symmetrizable is too restricted. A characterization theorem that leads
to new orthogonal polynomials is usually interesting, one that says the classical
polynomials are the only polynomials with a given property are usually much less

interesting and if they keep people from looking for new polynomials they are harmful.

-12-
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